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Stability of the developing laminar flow 
in a parallel-plate channel 
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University of Minnesota, Minneapolis, Minnesota 

(Received 20 January 1967 and in revised form 20 June 1967) 

The hydrodynamic stability of the developing laminar flow in the entrance region 
of a parallel-plate channel is investigated using the theory of small disturbances. 
The stability of the fully developed flow is also re-examined. A wide range of 
analytical (i.e. asymptotic) and numerical methods are employed in the stability 
investigation. Among the asymptotic methods, each of three viscous solutions 
(singular, regular and composite) is used along with the inviscid solution to 
provide critical Reynolds numbers and complete neutral stability curves. Two 
numerical methods, finite differences and stepwise integration, are applied to 
calculate critical Reynolds numbers. The basic flow in the development region 
is treated from two stand-points: as a channel velocity profile and as a boundary- 
layer velocity profile. Extensive comparisons among the various methods and 
flow models disclose their various strengths and ranges of applicability. As a 
general result, it  is found that the critical Reynolds number decreases mono- 
tonically with increasing distance from the channel entrance, approaching the 
fully developed value as a limit. 

1. Introduction 
It is well established from the theory of small disturbances that the fully 

developed flow in a parallel-plate channel (i.e. the plane Poiseuille flow) is un- 
stable for large Reynolds numbers. The stability characteristics of the hydro- 
dynamically developing flow in the entrance region of a parallel-plate channel 
have, however, been investigated only in a preliminary and incomplete manner. 
The only study available up to this time is that of Hahneman, Freeman & 
Finston (1948). In  lieu of a detailed mathematical treatment of the problem, 
these authors confined themselves to the computation of critical Reynolds num- 
bers by applying the approximate formulae deduced by Lin (1945) from the 
zeroth-order asymptotic solution of the disturbance equations. As is demon- 
strated later, these formulae do not provide accurate results in the development 
region because conditions postulated in their derivation are not fulfilled. More- 
over, the basic flow profiles (Schlichting 1934) used in the calculations do not give 
velocity derivatives with good accuracy. As is well known, such derivatives play 
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an important role in the final results of the stability calculations. This probably 
accounts for the large scatter among the calculated points in the plot of critical 
Reynolds number versus axial location shown by Hahneman et al. 

The present research constitutes a detailed investigation of the stability of the 
entrance region flow and has two objectives: first, to provide detailed and re- 
liable stability information such as neutral stability curves and critical Reynolds 
numbers; and secondly, to make certain contributions to the mathematical 
and computational procedures involved in asymptotic stability theory. To 
achieve these ends, a wide variety of analytical and numerical methods of solu- 
tion have been employed. The flow in the hydrodynamic entrance region appears 
to be, in some respects, a boundary-layer flow. Correspondingly, the stability 
characteristics of a boundary-layer model of the developing flow are evaluated 
in addition to the stability characteristics of the complete velocity profiles of the 
developing flow. 

Owing to the wide-ranging nature of the present study, it has been necessary 
to  omit many details because of space limitations. These are available in Chen 
(1966). 

2. Formulation of the problem 
Before proceeding to the stability problem, consideration is given first to the 

basic flow in the hydrodynamic development region of the channel. Among the 
various approximate analytical solutions available in the literature, that of 
Sparrow, Lin & Lundgren (1964) appears to offer the most complete and accurate 
results. They obtained closed-form velocity solutions which are continuous over 
the cross-section and along the length all the way from the entrance to the fully 
developed region. This feature is of advantage in the execution of the stability 
problem, because the velocity derivatives are continuous and can be evaluated 
with great accuracy from algebraic expressions. 

With the transverse co-ordinate measured from the bottom wall of the channel, 
the velocity solution given by Sparrow et al. reduces to the form 

- 1 exp { - atX*) 1 2 coscc&/- 1) 
U = l-B(2y - y2) + [ i=lai cosai 

in which at are the roots of tan cci = cc,, and 

U = U/U,, y = ij/L, X" = X*/LR*, (2) 

where 5 and Uav are, respectively, the local velocity of the basic flow and its 
average value; L is the half-width of the channel; R* = LU,/v is the Reynolds 
number, v being the kinematic viscosity; 3 is the physical co-ordinate normal to 
the flow direction; and X* is a stretched axial co-ordinate. The relationship be- 
tween X* and the physical axial co-ordinate Xis  available in graphical form from 
Sparrow and in tabular form from Chen. 

If the basic flow 5 is assumed to be parallel, i.e., 5 = ?if@, upon which are 
superposed two-dimensional small disturbances, and if it is further postulated 
that both the basic flow and the resultant flow satisfy the Navier-Stokes equa- 
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tions of motion, there is obtained the familiar Orr-Sommerfeld equation in 
dimensionless form 

( w - c) (4’’ - a”) - W”$ = - - i ($iV - 2a2$” + a4$). 
aR (3) 

In  this equation, W and c( =c,+ici)  represent, respectively, the basic flow 
velocity and the wave velocity normalized by a characteristic velocity, say, 
;ilmax, the maximum velocity at  centre of the channel; a is the wave-number 
based on a characteristic length, say, L; R = LZmax/v is the Reynolds number 
based on Urnax; and the primes denote differentiation with respect to y. It may be 
noted that the treatment of (1) as a family of parallel flows with X *  as a parameter 
is consistent with the basic assumption aR 9 1. 

The amplitude function $ is related to the stream function ?,b by the expression 

?,b(x, Y, t )  = $(Y) exp - ct)}. (4) 

If c,is negative, the disturbances decay and the flow is stable; while if it is positive, 
the disturbances are amplified and the flow is unstable. The condition of neutral 
stability is characterized by ci = 0. 

Equation (3) is a homogeneous, linear differential equation of the fourth order. 
There exists, therefore, a set of four linearly independent solutions which are 
analytic functions of y and of the parameters c,  a and R. This set of solutions will 

The boundary conditions for $ are different depending upon whether the 
stability problem is formulated in terms of a channel flow or a boundary-layer 
flow. Owing to the symmetry of the basic flow profile with respect to the centre 
line of the channel, the solution $(y) for channel flow may be divided into even 
and odd modes. Of primary interest, however, is the case of even $(y), because 
the work of Grohne (1954) strongly suggests that, for plane Poiseuille flow, only 
this mode is likely to lead to instabilty. If $(y) is an even function, the boundary 
conditions are 

be denoted by $l(Y),  4s,(Y), M Y )  and $4(Y). 

$(Y1) = $’(Yl) = $’(Yz) = $”’(Y2) = 0 (5 )  

where, for notational convenience, y1 and y2 represent, respectively, the values 
of y at the bottom wall (i.e. y1 = 0 )  and at  the centre of the channel (i.e. y2 = 1). 

When the basic flow is regarded as a boundary-layer flow, the condition to be 
satisfied at the edge of the boundary layer ijz = 8 (defined here as the distance 
from the wall where T i  = ?is = 0.999Gmax) is readily shown to be 

$’+a$ = 0 for y~ y2= S (6) 

,and $(y,) = $’(yl) = 0 as before. 

3. The asymptotic solutions 
The asymptotic solutions of (3) are given elsewhere (see, for example, Heisen- 

berg 1924; Lin 1945, 1955; Tollmien 1929, 1947; Stuart 1963; Shen 1964; and 
Reid 1965). It suffices here to give only the final expressions. 

14-2 
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For the inviscid flow, the right-hand side of (3) vanishes. The resulting equation 
is of the second order and yields two solutions q51 and q52 which, following Heisen- 
berg (1924), are 

in which ho = 1 and all other h and k are expressed as integrals (see, for instance, 
Lin 1945). The solutions q51 and q52 are singular at  y = yc where W = c. 

There are three sets of viscous solutions which are of interest in connexion 
with the present investigation. The other asymptotic method of Heisenberg gives 
the singular viscous solutions (cf. Heisenberg 1924; Lin 1945) 

in which the minus sign corresponds to j = 3 and the plus sign to j = 4. It is 
to be noted that q53 and q54 are singular at  the turning point y, where W = c and 
are valid for (y- ye) =!= 0 fixed and (ax )  -+a. 

For asymptotic solutions which are valid in the region (y - ye) -+ 0 as (aR) -+ co, 
one may refer, for example, to the work of Lin (1945) and of Shen (1964). The 
outcome of the zeroth-order approximation gives two regular viscous solutions 

xi = JIm d y S Y  v@‘j-2)[$(iv)%]dv, ( j  = 3,4). (9) 
+m 5 

g = (aRW,’)Q(y - ye). 

The signs correspond respectively to j = 3 a n d j  = 4, and 

(9a) 

The solutions x3 and x4 are valid for 6 fixed and (aR) + 00 (i.e. y -+ y,) and are 
regular at  yc. 

The fact that q53 and $4 are not uniformly valid at  y = y, and x3 and x4 become 
increasingly inaccurate as I y - ycl becomes large motivates a combining of these 
solutions such that the resulting solutions will be uniformly valid in both relevant 
limits. This matching was first performed by Tollmien (1947) for the neutral 
case. The final expressions for the composite solutions take the form (see also 
Lin 1955; Reid 1965) 

where the & signs have the same meaning as in (9), and 

4. The eigenvalue problems 
Having delineated the different sets of asymptotic solutions, one can now pro- 

ceed to formulate the eigenvalue problems for subsequent numerical evaluation. 
For this purpose, one may alternatively use: (i) the four asymptotic solutions 
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&, x3 and x4; or (iii) the four solutions 

The formulation of the eigenvalue problems follows closely the approach of 
Lin (1945), except that different and more efficient methods were employed here 
in the evaluation of the viscous solutions and the series coefficients in the in- 
viscid solutions. A secular equation embodying the homogeneous boundary 
conditions is formed and then simpIified on the basis of order of magnitude 
arguments. From these operations, there follows 

'$1, '$2, '$3 and '$4; (ii) the combination 
'$17 '$23 $3 and $4. 

respectively for channel flow and for boundary-layer flow. In  the foregoing, 
W ;  = ~ ' ( Y J  and $12, '$31, $h etc. stand for ' $ 1 ( ~ 2 ) ,  '$3(y1), '$3y2), etc. 

It is of interest to note that the right-hand sides (i.e. the viscous terms) of 
( 1  1) are identical. Thus, if one defines the inviscid function on the left-hand side 
of each of the equations as (u + iv), identical eigenvalue equations can be derived 
for subsequent numerical evaluation of the neutral stability curves. The only 
difference, in addition to the different definitions of (u + iv), is that in the boun- 
dary-layer model the boundary-layer thickness 8 and the velocity a t  8, E8, are 
used, respectively, to normalize all the lengths and velocities. 

The quantities (u + iv) for channel flow and boundary-layer flow are respect- 
ively defined as 

In view of (7 ) ,  it is evident that both forms for (u + iv) can be written in terms of 
power series in u2. These series representations may be found in Lin (1945). 

Having dealt with the representations for (u+iv), one can now proceed to 
specialize the right-hand sides of (1 1) for the different viscous solutions. For the 
singular viscous solution, the expression for '$3, equation (S), leads to (cf. Lin 
1955) 

where Z = c(uR/ W;2)*. (13a) 

u + iv = [l- (1 + A)F(z)]-l .  (14) 

u + iv = [l-  (1 + A)P(S, f2)I-l. (15) 

Alternatively, if (9) for x3 is used to evaluate the quantity '$31/'$&, the regular 
viscous solution yields 

Similarly, the composite viscous solution R, equation (lo), gives 

The qualities x and '2 appearing in the foregoing are respectively equal to - g and 
- 2, in which y = yl. In  addition, A and 2 are defined by 

the bracketed factor being termed (gc - gl). 
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The function P(z) (or P(2)) is the well-known Tietjens function, while p(2, c)  
is related to P(2) as follows 

R% 4 = Rwl +%[I - ( w ; / c )  (% - Q,)lP(%. (17) 

P(z) was first computed by Tietjens (1925) and has subsequently been evaluated 
to greater accuracy (see, for instance, Lin 1945; Holstein 1950; Lock 1954; 
Miles 1960). Very recently, Chen, Joseph & Sparrow (1966) have reduced F(x) 
to a ratio of rapidly convergent power series. This series representation can be 
incorporated directly into a computer program, thereby facilitating a completely 
computerized procedure for calculating eigenvalues from asymptotic solutions. 

Equations (13), (14) and (15) are, respectively, the final eigenvalue equations 
for the singular viscous, the regular viscous? and the composite? solutions. These 
formulae are valid for both the channel flow and the boundary-layer models, with 
the corresponding (u + iv) respectively expressed by the first and second mem- 
bers of (12). 

For each one of the just-outlined eigenvalue problems, the method of successive 
iterations has been employed to generate neutral stability curves. For instance, 
for the regular viscous solution, iterative solution of (12) and (14) yields tc and 
z for a given real c .  Then, the converged values of a! and z are used to calculate 
the Reynolds number from the relation z = (aR W&y, - yl), Wi and (y, - yl) 
having been determined beforehand. A similar approach was employed for the 
singular viscous and composite solutions. The computational details may be 
found in Chen (1966). 

5. Lin’s formulae for estimation of critical Reynolds and wave-numbers 
Approximate formulae for the estimation of the critical Reynolds number and 

the corresponding wave-number have been derived by Lin (1945) by simplifying 
the regular viscous solution, assuming that the critical Reynolds number occurs 
at  z = 3.21 and that a and c are small. The end results are: for a symmetric 
profile with 4 even 

~ 1 .  = [W;c/H,(O)]&, R = L [ W ; B , ( O ) / C ] & ,  H,(O) = W2dy;  (18) J: 30W’ 
c3 

for a boundary-layer profile 

where a!, = E8 and R, = Us$//”. In  the foregoing, c = W, is found from the ex- 
c1.8 = W ~ C ,  R8 = 25 W;/c4, (19) 

pression 

Equations (18) and (20) were employed by Hahneman et al. (1948) in their study 
of the stability of the entrance region flow in a parallel-plate channel. As will be 
demonstrated in the forthcoming presentation of results, these formulae give 
good estimates for the critical Reynolds number only for profiles which are nearly 
fully developed, and fail to give accurate critical Reynolds numbers near the 
entrance of the channel. 

h 

-f For the purpose of calculation, P and P were respectively replaced by the modified 
h 

Tietjens functions9 and 
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6. Stepwise integration and finite-difference methods of solution 
Two numerical schemes were employed to solve the Orr-Sommerfeld equation. 

These techniques have been treated in detail by previous workers and need not 
be repeated here. They were used in this investigation to test and confirm their 
utility v i s - h i s  the asymptotic method of solution. An interesting difference 
between the eigenvalue problem encountered in the numerical solutions and that 
of the asymptotic solutions is that in the former c is found for given a and R, 
while in the latter, a and R are found for given c. 

In  the stepwise integration scheme, the method due to Nachtsheim (1964) was 
adopted, with minor modifications in the computer program. The Nachtsheim 
formulation, in essence, treats the boundary value problem as an initial value 
problem. This is done by a step-by-step numerical integration of the disturbance 
equation, with assigned values of a and R and an assumed value of c; c is varied 
iteratively. In carrying out the actual integrations, it is necessary to assign pro- 
visionally certain initial values, and it is the essence of the problem to find the 
correct initial values so that the differential equation and boundary conditions 
are identically satisfied. To minimize the effects of the truncation error, the solu- 
tion is carried out in two parts: by starting at  the wall (y = y1 = 0) and integrat- 
ing forward, by starting at  the centre of the channel (y = yz = 1) and integrating 
backward, and then matching somewhere in between, say, at y = 0.5. This pro- 
cess is continued until the matching condition is satisfied. Unfortunately, the 
stepwise integration method proved to be successful only for the fully developed 
flow and for the developing flow adjacent to the developed region. 

The finite-difference scheme is due to Thomas (1953). His technique involves 
transformation of the Orr-Sommerfeld equation and its boundary conditions into 
a set of algebraic equations, with special care taken to reduce the truncation 
error. The details of the transformation and the formulation of the simultaneous 
algebraic equations have been presented by Thomas (1953), Kurtz & Crandall 
(1962), and Tsou (1965). In  the present investigation, a simplified and more effi- 
cient computer program (relative to that of prior investigators) was devised to 
determine the eigenvalues. It was also found that the effect of the mesh size on 
the accuracy of the eigenvalues is significant, especially as the duct inlet is 
approached, the mesh size having to be decreased to maintain the accuracy of 
the results. 

7. The neutral stability results 
The asymptotic solutions yielded compIete neutral stability curves as well as 

critical Reynolds and wave-numbers. On the other hand, the finite-difference and 
stepwise integration schemes provided only critical Reynolds and wave-numbers. 
A detailed tabulation of the computed results can be found in the thesis (Chen 
1966) from which this paper is drawn. Only the graphical results will be presented 
here. 
Fully developed $ow. Figure 1 is a plot of neutral stability results for the case 

of fully developed flow, each of the three curves corresponding to a different 



216 T. S. Chen and E. M .  Sparrow 

viscous solution. In  the abscissa of the plot, R( = U,,,L/v) is used. If a vertical 
line is drawn tangent to the nose of each curve, the critical Reynolds number 
R,, is obtained. This gives R,, = 5400, 420 and 980 for the regular viscous, the 
composite, and the singular viscous solutions, respectively.? The composite 
solution yields a neutral curve which has a shape similar to that obtained for the 
regular viscous solution. Both the lower and the upper branches of these curves 
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FIGURE 1. Neutral stability curves for the fully developed flow, various viscous solutions. 
-, regular viscous solution; - - - , composite solution; - - - , singular viscous 
solution. 

are almost coincident. There is, however, a deviation near the noses of the curves 
amounting to a difference of about 20% in the critical Reynolds number. The 
singular viscous solution gives rise to a neutral curve which is quite different 
from the other two; this is the curve that would have been obtained by Heisen- 
berg (1 924) had he completed the neutral stability computation. 

The singular viscous solutions $3 and $4 give an error which is usually assigned 
the order (aR)-*, while the error in the regular viscous solutions x3 and x4 is 
regarded as being on the order of (aR)-i (see, for example, Lin 1945). Thus, at  
first glance, it might appear that for large (aR), the $ solutions are computation- 
ally superior to the x solutions. However, this is not the case. The error estimate 

7 These results will subsequently be compared with the R,, from the h i t e  difference 
solutions. 
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for the 4 solutions is not uniform; in fact, these solutions are singular at  y = yc 
and are not accurate near yc where I y - yc/ is of the order of (aR)a. For the type 
of basic flow studied here, ycis sufficiently small so that the region I y - ycJ - (aR)-f 
occupies essentially the entire layer between yc and the wall. Correspondingly, 
the 4 solutions are of low accuracy in the aforementioned layer; on the other 
hand, the x solutions are of high accuracy there. The superior performance of the 
x solutions therefore becomes plausible. On the other hand, the somewhat in- 
ferior performance of the composite solution, relative to the regular viscous 
solution, is a bit surprising. This interesting finding requires further examina- 
tion.? 

@255 2 0 x lo3 5x10’ lo4 5 x 1 0 ~  105 5 x  lo5 lo6 

R* 

FIGURE 2. Neutral stability curves for several axial locations, channel profile, regular 
viscous and composite solutions. -, regular viscous solutions; - - -, composite solution. 

Developing $ow. Neutral stability results based on the channel flow model 
were obtained for the regular viscous and the composite solutions at  13 axial 
locations X *  ranging from 0-005 to 0.20. In  order to preserve clarity, neutral 
curves are shown in figure 2 for only five axial locations. Included also are the 

t The composite soIution employed here can be reduced to #I and x solutions in both 
relevant limits 151 large and Iy-ycl small and is valid for any values of c, small or large. 
An alternative approach has been presented by Reid (1965) wherein the slowly varying 
term [ t / ( W - c ) ] s  is treated as a constant. In  this instance, &$, c) reduces to P(2). The 
results of his calculations for plane Poiseuille flow are in closer agreement with those of the 
finite-difference scheme than the present ones using f ( 2 ,  c). However, his formula can be 
reduced only to the x solutions and not to the 4 solutions. These two different approaches 
are discussed in detail by Fu (1967). 

h 
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two curves from the fully developed flow, that is, X* = a. In  the plot, R* 
( = zLavL/v) is used in the abscissa instead of R( = zLmaxL/v). This choice was made 
because R* contains no s-dependent quantities, whereas R contains Gmax, 
which depends on X*.  

A study of figure 2 reveals that both the critical Reynolds number and the criti- 
cal wave-number increase as X* decreases. That is, the flow becomes more and 
more stable as one approaches closer and closer to the entrance of the channel. 
Again, the composite solution yields somewhat lower critical Reynolds numbers 
than the regular viscous solution; the differences range from 22 to 9 yo as X* 
ranges from 0.20 to 0.005. 

3.25 I I I I I 1 1 1  I I I I I I I l l  1 1 1 I I I l l 1  
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2 x 10’ 5 x 1 0 ~  lo4 5 x 1 0 ~  105 5x105 lo6 

R* 

FIGURE 3. Neutral stability curves for several axial locations, boundary-layer profile, 
regular viscous and composite solutions. -, regular viscous solution; - - -, composite 
solution. 

For the boundary-layer model of the basic flow, the neutral stability results 
were computed for 11 axial locations X* ranging from 0.005 to 0.10. As in the 
case of the channel profile, only the regular viscous and the composite solutions 
were carried out. The neutral curves for five axial locations are illustrated in 
figure 3. In this plot, a and R* are again used as co-ordinates. These curves show, 
as for the channel profile, that the critical Reynolds number and the critical 
wave-number increase as X* decreases. As before, the composite solution gives 
somewhat lower critical Reynolds numbers. 

In  order to show the relationship between the channel and the boundary- 
layer models, neutral curves for five axial locations in the upstream portion of the 
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entrance region are brought together in figure 4; all results are from the regular 
viscous solution. It is of interest to note from the figure that for small X *  (i.e. 
for axial locations near the entrance of the channel), the two models predict 
practically identical neutral stability results. As X* increases, the discrepancy 
becomes more and more pronounced. This is due to the fact that the boundary- 
layer model loses validity for large values of X*.  

3.5 
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2 5  

2 0  

73 
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0 5  

0 
2 x 

1 I I I 1 1 1 1  I I I I I 1 1 1 1  1 1 1 I 1  I l l ’  
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- - 
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- - 

I I 1 I 1 1 1 1  I I I 1 I I 1 1 1  I 1 1 1 1 1 1 1  

lo3 5 x 1 0 ~  lo4 s x  lo4 lo5 5 x 1 0 ~  lo6 

8. The stability boundaries 
The critical Reynolds numbers R& for the channel profiles are plotted as a 

function of X* in figure 5. This presentation includes results from the various 
sets of asymptotic solutions and from the stepwise integration and the 
finite-difference schemes. The results from the stepwise integration scheme for 
X *  2 O-OSt are essentiallyidentical to thosefrom the finite-difference scheme. The 
two curves, therefore, lie together as illustrated in the figure. The general charac- 
teristic of all the R& versus X* curves is that the critical Reynolds number de- 
creases monotonically, as X* increases, to a constant value for the fully developed 
flow. 

If it is assumed that the results from the finite-difference schemearenumerically 

The stepwise integration method did not function successfully with single-precision 
computer arithmetic for X* smaller than 0.06. 
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0 002 004 006 008 010 

X *  

FIGURE 5 .  Critical Reynolds number versus axial location, channel profile, analytical and 
numerical methods of solution. -0-, stepwise integration scheme ; -e-, finite- 
difference schenie ; -0-, regular viscous solution ; -&-, composite solution ; - x -, 
Lin’s formulae, equations (18) and (20); v, Hahneman, Freeman & Finston (1948). 

exact, then it is logical to take them as a standard of comparison for the other 
results. It is evident from the figure that the regular viscous solution yields a 
curve which closely follows that from the finite-difference scheme, showing 
critical Reynolds numbers somewhat on the low side. The composite solution 
results in still lower critical Reynolds numbers. 

It may be of interest to compare the various critical Reynolds numbers 
obtained for the fully developed flow. The regular viscous solution yielded a 
value R,, = 5400, while the finite-difference method gave R,, = 5775 (mesh size 
of 0.01). From the step-wise integration scheme, values of 5758 and 5769 were 
obtained using mesh sizes of 0.01 and 0.005. For purposes of comparison, it may 
be noted that values of 5300 and 5780 have been calculated by Lin (1945) and 
by Thomas (1953), respectively, from the regular viscous solution and the finite- 
difference method. 

Lin’s approximate formulae, (18) and (20), give surprisingly good agreement 
with the finite-difference scheme for large values of X*; that is, for profiles which 
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are nearly fully developed.? The discrepancy increases markedly as X *  decreases 
toward the entrance of the channel and reaches 86 % (on the high side) at  X* = 
0.005. This large error in the predictions afforded by Lin’s formulae at small X *  
is attributed to the invalidity of a and c both being small, as assumed in the deriva- 
tion. The phase velocity c, is indeed small (about 0.31 a t  X *  = 0.005), but the 
critical wave number acr increases to about 3.0 as X* decreases to 0.005. 

E 
3 x 104 

2 x  

a: n; 

I x  

I I I I I I 
0 0.02 0.04 0.06 0.08 0.10 

X* 

FIGURE 6. Critical Reynolds number versus axial location, boundary-layer profile, ana- 
lytical and numerical methods of solution. -0-, finite-difference scheme ; -0-, regu- 
lar viscous solution; -A-, composite solution; -- x -, Lin’s formulae, equations (19) 
and (20). 

Equations (18) and (20) were employed by Hahneman et al. (1948) in their study 
of the stability of developing flow in a parallel-plate channel. Their results were 
converted to RZJ as a function of X *  and are included in figure 5. It is to be noted 
that there is a wide scatter among the points for X *  smaller than 0.03. This is 
probably due to inaccuracies in the velocity profiles used in the calculations. The 
discussion in the preceding paragraph suggests that the solution method used by 
Hahneman is not able to provide accurate stability results in the entrance region. 

The critical Reynolds numbers corresponding to the boundary-layer model are 
illustrated in figure 6. In  this plot, the finite-difference scheme shows the highest 

f For the fully developed flow, (18) and (20) yielded R,, = 587.5. 
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critical Reynolds numbers among the various solutions. For X *  larger than 0.04, 
it appears that the boundary-layer model, when solved by finite-differences, is 
invalid. Indeed, the curve starts to level off and then tends to rise at  X* = 0.10. 
This behaviour is believed due to the effect of the value of W" at the edge of the 
boundary layer. For larger values of X * ,  the imposed condition that W = 0 a t  
y 3 S is not satisfied at  all (as a limit, W = - 2 for the fully developed flow). 

The regular viscous and the composite solutions give critical Reynolds numbers 
which are lower than those obtained from the finite-difference scheme. In  the 
determination of the critical Reynolds numbers by the asymptotic methods, W 
does not appear a t  all. Only W' at the wall and at  the turning point yc are involved 
in the calculations. It is, therefore, conjectured that the curves from the asymp- 
totic solutions show the correct trend for the larger values of X*. 

* 
a; 

0 002 004 006 008 010 012 014 016 018 020 m 

X 

FIGURE 7. Critical Reynolds number versus (dimensionless) physical axial co-ordinate. 
channel and boundary-layer profiles. - - -, finite-difference scheme; --, regular viscous 
solution; A, channel profile; B, boundary-layer profile; C, Blasius profile. 

Application of (19) and (20), Lin's formulae, provides an R:p versus X* curve 
similar to those from the asymptotic solutions. It is close to the curve from the 
composite solution and, in addition, exhibits the same pattern. 

Finally, a plot is constructed to show the critical Reynolds number as a func- 
tion of the physical axial location X (  = Z/LR*) for both the channel profile and 
the boundary layer profile (figure 7). Only the results from the regular viscous 
solution and from the finite-difference scheme are included. 

It is apparent from the figure that the analytical and numerical methods of 
solution yield consistent results for each flow model. The numerical method 
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provides somewhat higher critical Reynolds numbers than the analytical solu- 
tion method. It is noteworthy that both flow models, i.e. channel and boundary 
layer, predict almost identical critical Reynolds numbers a t  small values of X, 
i.e. near the entrance of the channel. On the other hand, an increasing deviation 
is in evidence as X increases. The inset in the figure illustrates, in enlarged scale, 
the critical Reynolds numbers for small values of X .  

For the purpose of examining how the stability boundary for Blasius flow over 
a flat plate compares with that for the channel flow, two curves from the former 
are also included in figure 7. These curves were calculated from the expression 

R* = (Rz,s/XUmax)+, (21) 

where R,,B(=Bmax/v), the Reynolds number for Blasius flow, is related to 
R,, = (8*Umax/v), the Reynolds number based on the displacement thickness 
a*, by (see Schlichting 1960) 

The critical Reynolds numbers R,*, cr for the Blasius flow have been found to be 
420 for the regular viscous solution (Lin 1945) and 530 for the finite-difference 
scheme (Kurtz & Crandall 1962). 

It can be seen from the figure that the R:r values for the Blasius profile are 
very much smaller than those for the channel profile. However, it is evident that 
as X approaches zero, all of the profiles give R& values that approach infinity. 

R,, = 1*72(R, B)*. (22) 

9. Concluding remarks 
From the results of this investigation, the following major conclusions are 

drawn. 
The critical Reynolds number REr or R c r  decreases monotonically with in- 

creasing distance from the channel entrance, approaching the fully developed 
value as a limit. This finding is physically significant because it suggests that flow 
instability in a carefully controlled experiment will occur in the fully developed 
region rather than in the entrance region. 

The boundary-layer model, in general, predicts higher critical Reynolds num- 
bers than the channel model. 

Both the channel and the boundary-layer models predict essentially identical 
critical Reynolds numbers in the region very near the entrance of the channel. 

The boundary-layer model is not a valid approach for investigating stability 
in the downstream portion of the hydrodynamic entrance region. 

Among the various asymptotic solutions, the regular viscous solution yielded 
the most accurate results. This is believed due to the close proximity of the turn- 
ing point to the wall for the basic flow under consideration. 

The approximate formulae of Lin fail to give accurate critical Reynolds num- 
bers in the development region, except for velocity profiles very close to the fully 
developed. 
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